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The physical factors controlling the power-law behavior of impact energy in a composite granular chain
remain elusive. Based on event-driven simulations and the on-off intermittency of wave reflections, we obtain
the probability distribution functions of the waiting time � and the energy leakage �E. They exhibit lognormal
distributions, which together with the relationship between �E and � allow one to explain directly the power-
law behavior of the confined energy. This work may be extended to higher dimensions and help us understand
the complex dynamics in granular materials.
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Granular materials have been attracting significant interest
because of their ubiquity in nature and industrial processes,
but it is difficult to understand their intrinsic dynamic prop-
erties due to the strong nonlinearity of forces between par-
ticles and the complex distributions. A one-dimensional
granular chain as a simple starting point of studying higher-
dimension granular materials gives rise to rich phenomena
�1–5�. As reported in the pioneering work of Nesterenko �1�,
the propagation of an elastic impulse in a granular chain
possesses solitonlike features. Recently, Hong �6� con-
structed a “granular container” using a series of sections with
particles and predicted that this granular container can trap
energy in a particular region and release the trapped energy
little by little over time. He also found that a universal
power-law behavior of the impulse energy remained inside
various granular containers: ER=At−�, where the scaling ex-
ponent � is a universal dimensionless constant. Daraio et al.
�7� demonstrated experimentally the efficiency of solitonlike
and shocklike pulse trapping and disintegration in the granu-
lar protector. Doney and Sen �8� found the impressive miti-
gation capability of decorated and tapered granular chains
increases with the number of spheres and tapering. In a re-
cent numerical study �9� we observed a marked crossover in
the power-law behavior of the impact-energy decay, which is
linked to the structural transition from the compression to
dilation state in both heavy-particle sections. The average
reflection frequency first increases and arrives at its maxi-
mum at “crossing” time, and then decays almost exponen-
tially. Yet, the origin of the appearance of power-law behav-
iors and an apparent crossover remains to be clarified.

As is known recently, �i� when the solitary wave passes
from heavier particles into lighter ones, it breaks into a train
of weaker and slower pulses. �ii� When a pulse moves from
lighter particles to heavier ones, a significant part of it is
reflected back through the interface. �iii� In the process of
solitary wave collisions secondary solitary waves are gener-
ated. So a composite symmetrical granular chain �containing
one light section in the middle and two heavy sections at the
two ends� is filled with a large number of pulses bouncing

back and forth between two interfaces and trickling out the
trapped energy slowly. The common feature of the large
number of solitary waves may be their on-off intermittent
dynamics: any solitary wave moves freely between two in-
terfaces with no energy dissipation �this process is defined as
the “off” state� and bounces back at the interfaces accompa-
nying the energy leakage �defined as the “on” state�, result-
ing in the intermittent reflections associated with the inter-
mittent energy leakage. The off state is quiescent and
remains without energy dissipation for long periods, while
the on state is a burst of energy leakage, departing from and
returning to the off state quickly. The collective behavior of
large numbers of intermittent processes may be independent
of the details of individual attributes and instead be the con-
sequence of the generic property. Nonetheless, to the best of
our knowledge, the study of a composite granular chain has
not been reported in terms of the on-off intermittent mecha-
nism. The stochastic form of intermittency of the chaotic
system has been observed in many mathematical models and
experimental paradigms �10�. If the time interval between
successive reflections of a pulse is called the waiting time
���, these time intervals could be referred to as the laminar
phase. The intermittency may be characterized by the prob-
ability distribution functions �PDFs� of the waiting time and
corresponding energy leakage. The most common nature of
composite granular chains may be their intermittent dynam-
ics and the power-law behavior may be understood in terms
of the PDFs of the waiting time and the energy leakage,
which is the focus of this Rapid Communication.

Here we modeled the symmetrical granular chain contain-
ing two sets of hard spheres and divided into two heavy
�120+120 particles� and one light sections �180 particles�
and hence having two interfaces �see Fig. 1�a��. The heavy
�light� particles have masses m1 �m2� and radii R1 �R2�. Both
ends of the chain are free to move. A simple event-driven
method �11� well suited to describe hard spheres is used. No
dissipation on collisions is taken into account. Event-driven
simulations make it easy to track each individual particle in
time and each reflection of a pulse at the interfaces and thus
to conveniently obtain the information on waiting time and
energy leakage. The diameter of hard spheres is 100. The
governing parameter in the hard-sphere chains is mass, so we
modify the properties of granular chain through changing the*csliu@issp.ac.cn
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mass ratio, and for convenience m2 is set to be 1. An impulse
defined by an initial velocity �V=10� at time t=0 was initi-
ated at the first particle. The parameter �ij, introduced as in
previous work �9�, represents the degree of compression or
dilation of the granular chain between particles i and j. The
chain between particle i and j is in the dilation state if �ij
�0 and in compression state if �ij �0. The initial state cor-
responds to �ij�0�=0.01 for any i and j.

Our first observation is that a limited part of the system is
crossing the initial state at the crossing time tc. As displayed
in Fig. 1�b�, we observe the same crossover in the power-law
behavior of confined energy as that found in the soft-sphere
chain �9�: the leakage of confined energy contains two scal-
ing regions with different exponents, denoted by the com-
pression and dilation branch, respectively. Figure 1�c� shows
�ij�t�−�ij�0� as a function of time for heavy particles near
the interfaces. Note that here the vertical axis title is �ij�t�
−�ij�0�, indicating the degree of compression or dilation
relative to the initial state. This figure clearly reveals that the
difference �ij�t�−�ij�0� increases from negative to positive
with the time, and the time when its sign changes is in good
agreement with tc shown in Fig. 1�b�, namely, �ij�tc�
=�ij�0�. Hence the observed crossover in the power-law be-
havior is linked to the structural transition in both heavy
sections from the compression to dilation state relative to the
initial state. The result, �ij�tc�=�ij�0�, is further confirmed
in the hard-sphere chain with �ij�0�=0.1 and the soft-sphere
chains with a precompression �induced by a constant force
F=1� and a predilation ��ij�0�=0.01� by the molecular dy-
namic method. �ij�tc�=�ij�0� for the heavy particles close to
both interfaces reveals that at transition point and/or region a
part of two heavy sections is crossing its initial state.

Now we focus on the features of the energy leakage and

the waiting time. �E represents the energy leakage from the
light section to the heavy section after a reflection. Because
the obtained �E values span a wide range of more than
ten decades, it is found that the P��E� calculated using
the logarithmically scaled size of boxes �P��E�
= 1

N�i	�log10 �Ei−log10 �E�� is smoother than that usually
obtained using the linearly scaled boxes �P��E�
= 1

N�i	��Ei−�E��. A comparison between the P��E�’s for
different granular chains is presented in the semilogarithmic
scale in Fig. 2�a� and reveals a noticeable result: at first
glance the P��E�’s collapse onto the same curve for all
granular chains, indicating that there may exist the universal-
ity in P��E�’s in the whole energy-leakage process. So all
data are fitted with a lognormal function, f��E�
= a

�2
�Eb
e−�ln��E�−c�2/2b2

, shown by the solid line in Fig. 2.
Note that the lognormal distributions are skewed, and are
symmetrical at the logarithmic level. We obtain the standard
deviation b=0.98 and the expected or mean value c=0.83.
The peak at �Ep=0.88 marks the predominant interval,
which increases linearly with the square of impact velocity
�V2� as expected. We further evaluate these data with differ-
ent lognormal functions for different mass ratios, respec-
tively. The obtained peak positions ��Ep� are presented
against the mass ratio in the inset of Fig. 2�a�. It is clear that
the mean value of �E depends on the mass ratio: �Ep almost
decreases exponentially with mass ratio except for the big
deviation at mass ratio 40:1. The standard deviation and the
peak width are insensitive to the mass ratio �not shown here�.
Similarly, the P��E�’s in compression and dilation regions
are presented in Figs. 2�b� and 2�c�, respectively. Whether in
the compression region or in the dilation region the P��E�’s
could also be fitted roughly with a “universal” lognormal
function, respectively: in the compression region, b=0.90
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FIG. 1. �a� Schematic setup of the symmetric hard-particle chain
containing two sets of particles. �b� The time dependence of the
impact energy remained inside the light-section particles. Two solid
lines are guides to the eyes and correspond to the compression and
dilation branches, respectively; they intersect at time tc. �c� The
compression and/or dilation parameter �ij�t�−�ij�0� as a function
of the time for heavy particles nearby the interfaces.
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FIG. 2. �Color online� Probability distribution functions �PDFs�
of energy leakage ��E� at the interfaces in the whole energy-decay
process �a�, in compression �b� and dilation �c� regions. Different
m1 values are indicated in the figure. Solid lines are lognormal
distribution fits. Insets in �a� and �b� show the obtained peak posi-
tions �Ep against the mass ratio m1 :m2.
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and the peak locates at 1.25; in the dilation state b=0.76 and
the peak is at 0.67. In the same way above, the further quan-
titative analysis in the compression region has been made of
the mass ratio effect on the peak position and is presented in
the inset of Fig. 2�b�. A similar conclusion could be made:
�Ep almost decreases exponentially with mass ratio except
for mass ratio 40:1, whereas the standard deviation and the
peak width are not sensitive to the mass ratio. Here the quali-
tative analysis of this mass-ratio effect is made as follows.
Applying energy and momentum conservation, at the heavy-
light interface when a heavy particle with velocity Vh col-
lides with a stationary light particle, the velocities become
after the collision Vh�=

m1−m2

m1+m2
Vh and Vl�=

2m1

m1+m2
Vh; at the light-

heavy interface when a light particle with Vl� collides with a
stationary heavy particle, the velocities become after the col-
lision Vl�=

m2−m1

m1+m2
Vl� and Vh�=

2m2

m1+m2
Vl�. So, for the first sub-

wave, during its first reflection �E11= 1
2m1�Vh��

2

=
8m1

3m2
2

�m1+m2�4 �Vh�2�in the next reflection �E12= �
m1−m2

m1+m2
�2�E11 and

so on�. For the second subwave, �E21=
8m1

3m2
2

�m1+m2�4 �Vh��
2, etc.

Therefore, when
m1

m2
�1 �Ep decreases exponentially with

mass ratio, which is in agreement with our results; the big
deviation for mass ratio 40:1 should be related to the insuf-
ficient statistics.

The P���’s are shown in the semilogarithmic plot in Fig. 3
�for clarity only four different mass ratios are presented�.
Compared to the P��E�’s the P���’s are quite smooth
whether they are calculated using logarithmically or linearly
scaled size of boxes. For m1 :m2=40:1 shown in Fig. 3�a�,
the data of long waiting time are relatively less since the
smaller the mass ratio the faster the energy decay. The whole
P��� consists of a peak in the short waiting-time side and a
very broad hump in the long waiting-time side. The peak
arises from the reflection intermittency in the compression
state and the broad hump stems from the reflection intermit-

tency in the dilation state. The peak is nearly symmetrical
suggesting that P��� can be fitted by a lognormal distribution
function and its width is not sensitive to the mass ratio,
whereas its position ��p, denoted by the arrows� moves to-
ward short waiting time with the mass ratio. Hence, the mean
value of � in the compression state decreases with the mass
ratio. On the one hand, the free-end boundary condition is
used in our present case, so the dilation state exists, where
the gaps between grains appear in heavy sections and be-
come wider with time. On the other hand, after the energy-
decay processes in the compression state, in the dilation state
not only do the pulses become much weaker but also there is
a big decrease in the number of pulses. Therefore a very
broad hump located at the long-time side of the PDF curve is
observed in the dilation state, in contrast with the symmetry
peak located at the short-time side in the compression state,
and it may be inappropriate to study the dilation state in
connection with the on-off intermittency despite the fact that
we calculated the PDF of the waiting time �.

According to the above results and discussions, the
power-law behaviors of the confined energy could be well
understood. Two factors control the energy decay: the energy
leakage and the waiting time. The former follows lognormal
distributions in the whole impact-energy-decay process. The
latter follows lognormal distributions in the compression
state and a likely broad distribution in the dilation state. In
the compression state the expected value of � increases with
mass ratio. As aforementioned, the off state is quiescent and
remains without energy dissipation for long periods �, while
the on state is a transient energy release �E. Because of the
energy leakage in the on state, high-energy pulses decay to
low-energy pulses and low-energy pulses decay to lower-
energy ones, implying the pulses decay in a cascadelike man-
ner, and the structures of laminar phase � break up into wider
and wider structures. These suggest the appearance of the
‘‘law of proportional effect.’’ For a high-energy pulse, �E is
large and the corresponding � is short, while for a low-
energy pulse �E is small and the corresponding � is long.
Hence, with the time �E values become smaller and smaller
and � values become larger and larger, between them there
exists a power-law relation with a negative exponent, which
is confirmed by our data. Meantime, the cascadelike manner
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FIG. 4. �Color online� A comparison of the mass-ratio depen-
dence of the power-law exponent ��� in the compression state and
the peak position ��p� of the P��� in the compression region.10 100 1000
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FIG. 3. �Color online� Probability distribution functions �PDFs�
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peaks in the compression region.
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and the law of proportional effect provide the impetus to
understand lognormal distribution of �E and � �12�. Both
governing factors follow the lognormal probability distribu-
tions in the compression state. So, we can understand the
power-law decay of the confined energy. The great difference
in the P���’s between compression and dilation states leads
to the marked crossover in power-law behavior. In addition,
for the compression state the scaling exponent ��� and the
expected value of the waiting time �here approximated by �p,
see Fig. 3� as a function of mass ratio are presented in Fig. 4.
Two sets of data overlap roughly regardless of their differ-
ence in units, indicating that the mass-ratio dependence of �
plays a leading role in the mass-ratio dependence of �.

In conclusion, based on the on-off intermittency of
solitary-wave reflections we obtain the P��� and P��E�.
Both P��� and P��E� follow lognormal distributions and
there exists an important difference in the P��� between
compression and dilation states, which together with the re-
lationship between �E and � make comprehensible the
power-law behavior of the confined energy and the differ-

ence in the scaling exponents between compression and di-
lation as well as the mass-ratio dependence of power-law
exponents. Intermittency is a prominent phenomenon ob-
served in a large variety of nonlinear dynamical behavior.
The statistical properties of solitary waves studied in this
work are fundamentals of the dynamics in composite granu-
lar chains. This work may be extended to higher dimensions,
e.g., the features of successive-collision intervals in granular
flows and in a granular mixture subject to vibrations. In ad-
dition, it would be interesting to make a detailed comparison
of the present case with the three types of intermittency in-
troduced by Pomeau and Manneville, as well as crisis-
induced intermittency �13�.
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